المتتابعة ١٩،١٤،٩.٤….ليست حسابية، غالبًا ما يتم تصنيف الأرقام إلى أنماط ومجموعات معينة بناءً على الخصائص أو الصفات المشتركة ، مثل ما إذا كانت الأرقام أولية ، أو حتى أرقام ، أو أرقام مربعة كاملة ، وما إلى ذلك ، بحيث تساعد هذه الأنماط والمجموعات في فهم المعطى و المطلوب ، ومن خلال موقعنا سنتعرف على التسلسلات وأنواعها.
المتتابعات
تحديد التسلسلات أو التسلسلات بالإنجليزية: sequence أن يكون ترتيبًا لمجموعة من الأرقام المتتالية التي تتبع نمطًا أو قاعدة معينة ، بحيث يأخذ كل رقم في التسلسل رقمًا معينًا يميزه عن الأرقام الأخرى ، وقد يكون التسلسل محدودًا أو غير محدود اعتمادًا على حكم أن الأرقام تتبع.
شاهد أيضًا: ما أساس المتتالية الحسابية التالية؟ 3 ، 5 ، 7 ، 9 ، 11
المتتابعة ١٩،١٤،٩.٤….ليست حسابية
هناك العديد من الأسئلة حول المتتاليات وصيغها والقواعد التي تتبعها ، ومسألة التسلسل 19 ، 14 ، 9.4 … ليس حسابًا صحيحًا أو غير صحيح؟
- خاطئة .
في التكملة 9.4 ، 14 ، 19 … إنه تقدم حسابي لأن الفرق بين كل من حديها يساوي 5 ، وهو فرق ثابت ومتساو لجميع النهايات.
شاهد أيضًا: القوانين العلمية هي الخطوات المتسلسلة المستخدمة في حل المشكلات العلمية
أنواع المتتابعات
هناك نوعان من التسلسلات ، على النحو التالي:
المتتابعات الحسابية
يتم تعريف المتتاليات الحسابية بالإنجليزية: arithmetic sequences أن هذا هو التسلسل الذي يكون فيه الفرق بين كل حدين من حدوده ثابتًا ، بحيث يُشار إلى الحد الأول بالرمز ح1 يطلق عليه أساس التسلسل ، ويرمز إلى الاختلاف المستمر مع الرمز د ، وعادة ما يتبع التسلسل الحسابي معادلة عامة وهي:
- ح ن = ح1+ن-1× د
أين:
- ح ن : قيمة الحد المطلوب.
- N: الرقم الذي يعبر عن ترتيب الرقم الذي سيتم العثور عليه في التسلسل.
ويمكن إيجاد مجموع حدود المتتالية الحسابية باستخدام القانون الآتي:
- المجموع = ن/2x 2×ح1+(ن-1وجه ضاحك)
حيث توقف ن لعدد من الحدود التي يمكن العثور عليها.
المتتابعات الهندسية
تُرعف المتتاليات الهندسية بالإنجليزية: geometric sequences أن هذا هو التسلسل الذي تكون فيه النسبة بين كل حدين متتاليتين ، ويقصد به نسبة منتج قسمة المصطلح الثاني على المصطلح الأول ، وحاصل ضرب قسمة الحد الرابع. بالحد الثالث وهكذا ، ويتبع التسلسل الهندسي قاعدة محددة وهي:
- ح ن = أ × ر ن-1
أين:
- ج: هو الحد الأول من التسلسل الهندسي ، ويسمى أساس التسلسل
- ر: هي النسبة الثابتة لحدود التسلسل الهندسي.
ويمكن إيجاد مجموع حدود السلسلة الهندسية باتباع القواعد التالية:
- إذا كانت <1 ثم:المجموع = أ×(1-رن)/(1-ر).1-رن/1-ر.
- إذا كانت ر> 1:المجموع = أ×(رن-1)/(ر-1).رن-1/ر-1.
أمثلة متنوعة حول المتتابعات
توضح الأمثلة المختلفة الفرق بين التسلسل الحسابي والهندسي في الشكل الأكثر دقة وصحة ، وذلك على النحو التالي:
- المثالُ الأول : أوجد المصطلحات الثلاثة المتبقية في المتتالية الحسابية 15 ، 9 ، 3 ، -3 ،….
- الخطوة الأولى: إيجاد الفرق بين كل حدين في المتتابعة الحسابية
- 9-15 = -6 ، -3-3 = -6
- الخطوة الثانية: إيجاد ثلاثة ، الفرق بينهما يساوي 6
- الحل: -9، -15، -21 حيث -15- -9 = -6، -21 – -15 = -6
- تُصبح الصورة المتتالية: 15 ، 9 ، 3 ، -3 ، -9 ، -15 ، -21
- المثالُ الثاني : متتابعة قاصرة حن = 6ν + 1 ، فما أول ثلاثة حدود فيها؟
- الخطوة الأولى: التعويض في القاعدة العامة للاستمرار
- حن = 6ν + 1 ، ومنها:
- ح1 = 6 × 1 + 1 = 7.
- ح2 = 6 × 2 + 1 = 13.
- ح3 = 6 × 3 + 1 = 19.
- الحل: الحدود الثلاثة الأولى: 7 ، 13 ، 19 ، ….
- المثالُ الثالث : أكمل الحدود في التسلسل الهندسي 2، …، …. ، 54 ، 162
- الخطوة الأولى: إيجاد النسبة بين الحدين الأخيرين للتسلسل الهندسي النسبة = 3
- الخطوة الثانية: اضرب النسبة في الحد الأول: 2 × 3 = 6 يكونُ هو الحد الثاني
- الخطوة الثالثة: اضرب النسبة في الحد الثاني: 6 × 3 = 18 يكونُ هو الحد الثالث
- الخطوة الرابعة: اضرب النسبة في الحد الثالث: 18 × 3 = 54 هو الحدُ المعطى فنوقف عملية الضرب
- الحل: 2، 6، 18، 54، 162
لقد وصلنا إلى نهاية مقالتنا المتتابعة ١٩،١٤،٩.٤….ليست حسابيةحيث سلطنا الضوء على أنواع التسلسلات والقوانين التي تتبعها وأمثلة توضيحية لها.